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Kelvin and Poincar6 waves are generated when an ocean wave arrives at  a nominally 
rectilinear coastline and interacts with coastal irregularities. The discussion of this 
problem given by Howe & Mysak (1  973) is extended in this paper in order to examine 
the role of multiple scattering of the Kelvin and PoincarB waves. An integro-dif- 
ferential kinetic equation is derived to describe these processes in the limit in which 
the irregularities are small compared with the characteristic wavelength. In  the 
absence of dissipative mechanisms it is verified that this description of interactions 
with the coast conserves total wave energy. The theory is applied to a variety of 
idealized problems which model tidal and storm surge events, including the generation 
and decay of Kelvin waves by extensive and localized PoincarB-wave forcing, and the 
influence of multiple scattering on the radiation of Poincarb-wave noise into the 
open ocean. 

~ 

1. Introduction 
Howe & Mysak (1973, hereafter referred to as HM) have considered the reflexion 

and scattering of a PoincarB wave (i.e. a long gravity wave on a uniformly rotating 
sheet of homogeneous fluid, also known as a Sverdrup wave; see Platzman 1971) 
incident on a randomly irregular coastline. The coast was infinitely long and straight 
except for small deviations <(y) which were assumed to be adequately represented by 
a centred, stationary random function of position y along the coast. A theory of 
energy transfer processes in random media was used to determine the total energy 
flux from the incident Poincar6 (or P) wave into (i) a Kelvin (K) wave trapped against 
the coast and (ii) diffuselyscattered P-wave noise. In  HM the so-called binary scattering 
theory (Frisch 1968; Howe 1971) was applied and the consequences of multiple 
scattering were not taken into account. Multiple scattering is likely to have a sig- 
nificant effect in situations involving the propagation of a K-wave, say, over distances 
along the coast of the order of several characteristic wavelengths, or when a P-wave 
is incident or scattered at a grazing angle to the coastline. Such problems can be 
handled theoretically by extending a procedure which was used by Howe ( 1 9 7 4 ~ )  
to examine the multiple scattering of sound a t  an irregular surface and which makes 
use of a kinetic (or transport) equation for the wave energy. 
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In  5 2 of this paper we briefly recall certain results obtained in HM concerning the 
specular (or coherent) component of the field scattered from an incident P-wave. An 
integral equation for the distribution of the total scattered energy over all available 
wave modes which incorporates the effects of multiple interactions with the irregular 
coastline is then derived ($  3) for the case in which the incident P-wave is harmonic 
in time. The various terms appearing in this equation are interpreted in $4.  In  Q 5 
a modification is introduced to include the possibility of a slow space-time modulation 
of the scattered field; the result is an integro-differential equation of the type occurring 
in kinetic theory. This equation splits naturally into separate but coupled equations 
for the scattered K-wave and the diffusely distributed P-wave noise. 

These equations are used ( $ 5  7-9) to study various idealized model problems which 
characterize simple storm surges and tidal events that occur in the neighbourhood of 
extensive irregular coastlines and in which K-  and P-waves play a fundamental role. 
The solution of such problems must lead to an improved understanding of the relative 
importance of the various physical mechanisms involved, although no attempt is 
made in this paper to explain or interpret practical observations. In  $7 we examine 
the decay of a K-wave and determine the space-time behaviour of the K-wave 
generated by extensive ($  8) and localized ($ 9) incident P-waves. Finally the P-wave 
transport equation is used in $ 10 to assess the importance of multiple scattering of 
the diffusely scattered P-waves. 

2. The specularly reflected field 

given by $o = a exp i{ - 1,x + m, y - wt} + C.C. (complex conjugate) 

and which is incident on the irregular coastline x = ((9) from the half-space x > ((y) 
(see figure 1) .  We suppose that g(y) is a stationary random function of position y 
along a nominally rectilinear coast (the y axis) and has zero mean. Assume for definite- 
ness that w > 0, in which case I ,  is also positive. The usual long-wave equations for a 
uniformly rotating sheet of fluid of undisturbed depth d (Lamb 1932, p. 319) imply 
that lo, m, and w are related by the following dispersion relation: 

Consider a plane harmonic P-wave for which the elevation of the free surface is 

(2.1) 

where 82  = gd, g is the acceleration due to gravity and f = 2R sine, is the Coriolis 
parameter at a mean latitude O,, R being the angular velocity of the earth. Note that 
(2.2) also represents the dispersion relation for an internal P-wave of vertical mode j 
if s2 is replaced by s: = gd,, where di is the ‘equivalent depth’, a quantity which 
depends on the density stratification. For most oceanic situations d B d, > d, > ... . 
Also, for any given mode j, 4, is proportional to the internal wave amplitude a t  a 
given depth in the fluid. 

The specularly reflected field $ R  is defined as the mean scattered wave with respect 
to an ensemble of realizations of the irregularities of the coastline and has the form 

(2.3) $R = Rexp i { lox + m, y - wt} + c.c., 

(1 + OCG <E2>,>, 
a[wI, - im, f ] 

wl, + im, f where [cf. HM (3.12)] R = (2.4) 



Scattering of Poincard waves. Part 2 

Y 

A 

339 

waves 

Kelvin wave f;." w 

FIQURE 1.  Irregular coastline configuration. [(y) is a stationary random function of y with (6) = 0. 
The whole system rotates counter-clockwise about a vertical axis directed out of the paper with 
angular velocity 3 f. A Poincar6 wave incident at an angle 8, to the mean normal to the coastline 
generates (i) a specularly reflected Poincari? wave, (ii) diffusely scattered Poincarb waves and 
(iii) a trapped Kelvin wave. 

in which the angular brackets denote the ensemble average. In  the absence of coastal 
irregularities IRJ = l a [ ;  for $ + 0 however, IRJ c la( and the correction term is 
proportional to an integral over the spectrum @(m) of E(y), which is defined by 

where =%?I) = (E(y + 4 5(4) (2.6) 
is the covariance of E.  

Now, for any given realization of the coast 6,  the total scattered field consists of 
a superposition of q5E, the coherent component, and a diffusely scattered random field 
#'. The latter is partitioned between P-wave noise and a K-wave (see figure 1). The 
specular reflexion coefficient R given by (2.4) is obtained by imposing the condition 
that the fluid velocity normal to the coast be zero: 

u = v.& on x = ((y), 

where (u, v) are respectively the (x, y) components of velocity. Expanding the terms 
in this equation about x = 0,  we find 

u = v ~ , - u x ~ - & u x x ( z + v x ~ ~ ,  on z = 0 (2.7) 

correct to second order in t. Equation (2.7) is expected to  provide a good approxi- 
mation to the exact boundary condition provided that Ko(E2)* < 1, i.e. provided t.hat 
the characteristic wavelength -2n/Ko is large compared with (E2)i. Now, as dis- 
cussed at length in HM, a further simplification of (2.7) can be made by replacing 
terms quadratic in 6 by their ensemble averages. Thus, since (&,) = 0, we t,hen have 

u = vt, - u, 5 - &Lzx(.p) on x = 0 (2.8) 
12-2 
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for sufficiently small 6. Using the relations 
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1 u = s(f$, - i W 9 , ) / ( W 2 - f  9, 
= - S(f4, + i W $ , ) / ( W 2  -f 2 ) ,  

which are valid for a harmonic time dependence e-iwt, (2.8) can readily be written in 
terms of $ (the total surface elevation). 

3. Integral equation for the diffusely scattered field 
The equation which describes conservation of total wave energy at the coast may 

be obtained by multiplying the boundary condition (2.8) by the perturbation pressure 
p evaluated on the boundary: 

p ( u  - v5, + u, 6 + &ux,(~z>) = 0 on x = 0, (3.1) 

where P = p(6, Y) = ~ ( 0 ,  Y) +p,,(O, y) t+ ~p, , (O,  y)(C2). Sincep = pg4 and u, u,, u,, and 
v can be writtenin terms of 4 by meansof (2.91, equation (3.1), when suitably averaged, 
gives the net effect of scattering from the incident field. This was essentially the 
procedure followed in HM to obtain expressions for the power fluxes into the K-wave 
and the P-wave noise. To isolate the scattering of energy into a particular wave mode, 
we must first decompose the scattered wave field into its constituent Fourier com- 
ponents $n, say. Then in the segment of the coast in which the Fourier analysis has 
been executed, the boundary irregularities will lead to a redistribution of energy 
amongst these components. In  order to determine the effect of the irregularities on 
one of these components, (2.8) is multiplied by pn = pgq5, evaluated on the boundary 
x = &). Thus the equation 

pg$,(u - vt, + u, t: + &uXx(t2)) = 0 on x = 0, (3.2) 

where $n 3 $n(C> Y) = #n(O, Y) + $nx(O, Y) 6 + $@nxx(O, Y ) ( C ~ ) ,  may be taken to describe 
the interactions between $n and all other components of the field. Finally, an appro- 
priate average of (3.2) will yield an integral equation for the mean-square scattered 
field in terms of the individual scattered modes. 

To discuss this method of describing multiple scattering in more detail it  is necessary 
to define the fundamental length scales involved. We first introduce the small para- 
meter 

(denoted by /3 in HM), which is the ratio of the amplitude of the coastal irregularities 
to  the Rossby radius of deformation r = s / f .  The latter is the basic horizontal length 
scale associated with P- and K-waves.t Then if A( = O ( r ) )  denotes a typical wavelength 
it follows that the multiple scattering of waves at  the coast produces significant 
effects over distances of order Ale2 (see HM; Mysak & Tang 1974). It is therefore 
appropriate to choose an interval of the coast of length L < A/s2 in which to Fourier 
analyse the wave field, and to examine the variation in the amplitudes of the Fourier 
coefficients over much larger distances. In  a semi-infinite strip parallel to the x axis 

t For the internal modes defined in $2, T is replaced by the internal doformation radius 
% E .  Hence for R given coastline, the internal modes are more rI = 8,/f and accordingly 

strongly affected by the irregiilaritics. 
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lying in x > 0 and of width L centred at y = 0, say, the total field may be set in the 

form m 

y5 = 2 {h(m,) + RSm,m,> exp i { I ,  x + mn y - wt> + $, + cx., ( 3 . 3 )  
n = - m  

where R is defined in (2.4), h(m,) is a Fourier coefficient of the random field which 
satisfies (h(mn)) = 0, and where m, = 2 n n / L  ( n  + 0 ) ,  m, = wavenumber component 
of (2.1), I ,  = (Kt--m:)t  > 0 if c K,2 and is positive imaginary otherwise, Sij = 
Kronecker delta symbol and 4, = incident field ( 2 . 1 ) .  

In  order to determine the properties of the random field in the semi-infinite strip 
we shall find it necessary to apply a local form of Born's scattering approximation 
(see below), the validity of which leads to the additional requirement that L2E2/12 < 1 ,  
where I is the correlation scale of the irregularities (Frisch 1968).  Clearly this inequality 
holds if L = O(l/&).  Thus, in summary, we introduce three length scales, I ,  L and 
Ale2, and for sufficiently small E we have the following ordering amongst these scales: 

The Fourier coefficients h(m,) in ( 3 . 3 )  are purely random, and it is convenient to 
1 -g L -g A/@. 

write h = E+h', ( 3 . 4 )  

where E denotes the average of h over an ensemble of realizations of [ within the strip 
of width L. That is, % is that part of the random field that is locally uncorrelated with 
6:  ( @ ( y ) )  = 0 for YE L but (h' t (y))  =I= 0, where as before angular brackets denote the 
ensemble average with respect to the whole of the coast. The local Born approxi- 
mation will be used to determine h', and since I -g L < A / $ ,  it  can be shown that 
A'/% = O(e)  [see (3 .16 ) ] .  

In the interval L, we also write 
m 

g=-m 
t(y) = 2 g ( m Q )  exp (imQ y) (3 .5)  

where Am = 2 n / L ,  m-q = - mq, and since 5(y) is real, c(m) = E*( - m).  For I 4 L, we 

(3 .6 )  

where @(m) is the spectrum defined in (2 .5 )  and the overbar denotes the average 
defined in the preceding paragraph. We shall be interested in the continuum limit 
obtained as s - t O  (L+co), in which case the approximation (3 .6 )  becomes exact 
(Stratonovich 1963) and the interval in wavenumber space between successive Fourier 
components tends to zero. For this reason we introduce a continuum distribution 
function P(m)  for the random modes, in which the subscript is discarded: 

<lh(m)I2) = P(m)Am, (3 .7 )  

where Am -+ dm in the continuum limit. We now proceed to derive an integral equation 
for P(m) which is valid asymptotically as e -+ 0. 

Before averaging ( 3 . 2 )  we record here for future reference the expansion 

+ ( E ,  Y) = Q1(07 Y )  + Q J O ,  Y) E + h+ZZ(Q> Y) (P). 

P S { $  + $2 5 + 3$.r.z(t2>ln u = ~g {$ + #z 5 + 3y5zz(t2)>>n { ~ 5 g  -u,z 5 - 3uz.z<t2>> 

(3.8) 

Also, we rewrite ( 3 . 2 )  in the form 

on x = 0. (3 .9 )  
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From (3.3) and (3.8) it is readily shown that 
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m 

$ ( E , Y )  = C {(1-4i(t2)E)h(mn) + ( a + R )  ( 1 - ~ ( 5 2 ) ~ ~ ) 6 ~ ~ , m o ) e ~ ~ [ i ( ~ ~ n y - ~ t ) I  
n = - m  

m 
I + C { iZ~h(m,~)- iZ,(a-R)~, , ,o}~(m,)Amexp[i(m,+m,)y- iwt]  +c.c. 

N , q = - m  

Thus the nth Fourier component of this is 

[d(E,~)ln = {[h(mn)+ (a+R)8,nm,] [1--(52)z~1+C[iZ~h(mhi) 
N 

-iZo(a-R)6,,,0]~(m,-m,)Am} x exp[i(m,y-wt)]+c.c. (3.10) 

In  (3.9) we also need expressions for u, v, u, and u,, in terms of $. From (2.9) and (3.3) 
we find that on x = 0 

(3.11) 

(3.12) 

Let us now define the averaging procedure to be applied to the boundary condition 
(3.9), in which (3.5), (3.10) and (3.11) are to be used. First integrate (3.9) with respect 
to y over the width L of the strip. This isolates the Fourier components exp { & im, y} 
since (for q $. 0) {exp (imqy)}&m is an orthogonal set on L. Then average over a wave 
period 2nlo.  Finally, take the average ( ) over an ensemble of realizations of the 
coastal irregularities and pass to the continuum limit e -+ 0. Actually, for those 
interaction terms involving the product of g and h it  is convenient to do the ensemble 
averaging in two stages: first take the local average (.) with respect to all possible 
realizations of t(y) for  EL; then average the result over all realizations of 5(y) for 
y 4 L. The details of this calculation are somewhat involved and only the main points 
will be discussed. The procedure is a lengthy exercise that is identical to the analogous 
calculation in acoustic theory described by Howe ( 1 9 7 4 ~ ) .  

Considering first the left-hand side of (3.9), we obtain two sets of terms Il and I,, 
say. The terms in Il consist of expressions proportional to (Jh(m,)12) and the squares 
of the amplitudes of the incident and specularly reflected fields; in the continuum 
limit Il is given by 

I 
u, = - ig c [ln(imn f +  wl,) h(mn) - 10 B ~ ~ , ~ ~ ~ I  exp [i(m, y - 

w2- f, , 

w2- f2  , 

d - f 2  , 

+ C.C., 

2 [Zi(im,,f+ wl,)h(m,) +Z:A6,nm0] exp [i(m, y-wt)] + c.c., 

C [(il, f - wm,) h(m,) - C6,,,,] exp [i(m, y - 0.41 + c.c., 

-9  u,, = - 

- 9  v=- 

1 where A = im, f (a+R)-~Z, (U-R) ,  

c = iZof(u-R)+om,(a+R). 
B = im,f(a-R)-wZ,(a+R), 

where H ( x )  is the unit step function, 6(x) is the Dirac delta function and 

1 E s  Z(m) = (Kt-m2)t. 
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Also, we have used (3.7) and the relation 

s ~ , ~  = liL exp {i(mn - mo) x> dz + ~ ( m  - mo) dm as L -+ co. 
2n -)L 

The terms in I, involve interactions between h and 5: 

343 

+-A*  Zll,(S(mn-mq)h(mq))S,nmo}+c.c. (3.14) 
4 

In  the continuum limit, mn --f m and the barred terms result in expressions of the form 

2 @(m--m4)B(m4)Am+ @(m-M)/3(1M)dM. 
4 s 

To see how an expression such as @(m-m,)P(m,)Am arises from the first barred 
term in (3.14) for example, we first introduce the approximation 

(h*(mn) l(mn-mq) h(mq)) 2: (h’*(mn) ((mn-mq) z(mq)) + <g*i(mn-mq) h’(mq)), 
(3.15) 

in which terms nonlinear in the locally scattered field, i.e. in h‘(m), are neglected, use 
having been made of (3.4). Then the local Born approximation is used to determine 
h’in (3.15) (seeHMfordetails): 

{Cimn I N f  -w(mn mN- z(mN) - [(mn - m N )  + z O B 1 ~ m ~ m , , } *  (3*16) 

In  (3.16), w is assigned a small positive imaginary part to ensure that the causality 
condition is satisfied by local scattering processes (Lighthill 1960). It is clear that 
h’/E = O(s) ,  which was assumed a; priori in (3.15). Thus the first term in (3.15), for 
example, becomes, on using (3.6) and (3.16), 

i@(m - mq) - imf u2- 2 

+ (imf+wl)* I- w (wl,* - ina,f) - (4) ( mmq - g)) p(mq) Am. 

To arrive at the penultimate line above, we have used the fact that z = h( 1 + O(E) )  
and the properties of the ensemble average stated after (3.4). Calculations along similar 



3 4 4  L. A .  M y s a k  and +I. S. Hotue 

lines are performed for the remaining barred terms in ( 3 . 1 4 )  and for the interaction 
terms which arise when averaging the right-hand side of ( 3 . 9 ) .  

In  executing the above programme we discover that one set of terms is associated 
with the coherent field and corresponds to the ‘determinate’ part of the product on 
the left-hand side of ( 3 . 2 ) ,  viz. 

(P,) {(u> - <v&l)> = 0. ( 3 . 2 ~ )  

All such ‘interactions’ are associated with the mean field and appear multiplied by 
S(m-m,) in the continuum limit. Since ( 3 . 2 ~ )  holds independently of the random 
interactions (see HM) we can delete from the average of (3.9) all terms proportional to 
Smamo or S(m-m,). Thus, for example, we delete the second term within the curly 
brackets in ( 3 . 1 3 )  and the third summation in ( 3 . 1 4 ) .  The remaining sets of terms 
describe the characteristics of the scattered, incoherent wave field. In  the continuum 
limit we obtain in this way the following integral equation for the distribution function 
A m ) :  

where 

( 3 . 1 8 )  

(3 .19)  

and the second line of ( 3 . 1 8 )  follows from the preceding one as Im w-++O. When 
f = 0 (no rotation, in which case the equations for sound waves and long waves are 
identical), it is easy to check that ( 3 . 1 7 )  reduces to the integral equation derived by 
Howe ( 1  9 7 4 a )  [cf. his equation ( 3 . 2 5 ) ] .  

4. Physical interpretation of the integral equation 
Let us write ( 3 . 1 7 )  in the form 

2 w Z H ( K i -  m2) + @(m - M ) p ( M )  I?(& m )  dM s 
I Pg2 

f = r 2 p ( m )  { / @ ( m  - 11) PW) r ( m ,  M )  d~ + 1 (m - m,) c + l , ~ 1 2  @ ( m  - m,) . 
( 4 . 1 )  

The second term in the brace brackets on the right of this equation represents the 
flux of energy per unit area of coast from the incident coherent wave m, into mode m 
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of the random field. Since this term is proportional top("), it is apparent from (3.18) 
that on average energy enters a single K-wave at m = - w / s  and a continuum of 
P-waves satisfying m2 c K;. Further, the right-hand side of (4.1) is proportional to 
p(m)  and the left-hand side to P(m),  from which we deduce that P(m) =I= 0 only for these 
modes. 

Now the first term on the left of (4.1), being proportional to (pmum), represents the 
rate a t  which the P-mode m is radiating energy into the open ocean (x > 0) per unit 
area of the coast [cf. Howe 1974a, equation (3.29)]. The second term on the left is 
proportional to the rate at  which the ( P  or K )  mode m is losing energy by scattering 
into all other (P or K) wave modes M. These decay mechanisms are balanced on the 
right-hand side by the flux of energy into the mode m due to (i) the multiple scattering 
of all other random modes M and (ii) the direct scattering of energy from the coherent 
field. 

When (4.1) is integrated over all values of m it  follows from the above that the 
component of the power flux into the open ocean which is associated with the random 
wave modes is given by 

Ps = - /Z(m) B(m) H(KE - m2) dm 

The double integral on the right vanishes because of the asymmetry of the integrand, 
and the integral involving @(m-mo)  may be simplified by use of (2.4), (3.12) and 
(3.18). Thus correct to the second order in we can set 

where 

and 

Here (PR)K and (PR)p are respectively the expressions obtained in HM [equations 
(4.11) and (4.12)] for the total power flux scattered from the incident wave into the 
K-wave and the P-wave noise. The factor 4)aI2 appears in (4.2) because the incident 
wave has amplitude 2a rather than unity, as was the case in HM. We conclude that 
(3.17) describes the detailed interactions a t  the coast between individual wave modes 
in a manner that satisfies conservation of total wave energy. 

To see how multiple scattering affects the partition of energy between the K -  and 
P-modes, let us write 

P(m) = 16(m + w / s )  + S(m)  H(K; - m2). (4.3) 
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Substituting (4.3) into (3.17) and integrating over a small interval about m = - w / s  
gives 

I 2wpg2(w2 - f 2, SrKo I (  M )  @(M + ~ / 8 )  ( M  + o / s ) ~  dM 
S2 w2P( M )  + M Y 2  

2nfpg2 IK0 @ ( M + u / s ) S ( M )  ( iMf+wZ(M))+-  ( W 2 - f 2 )  (M+!!) 
S 

- - 
(w2-f2l2 - K O  

This equation establishes the equality between the power flux from the K-wave into 
the random P-modes (left-hand side) and the flux of energy into the K-wave from 
multiply scattered P-modes M and the directly scattered coherent field. Observe that 
(4.4) contains both of the unknown amplitude functions I and S(m); a second equation 
is obtained by substituting (4.3) into (3.17) and retaining only those terms which are 
non-zero for m2 < Ki: 

dMS(m). 
K o  Z(m) r ( M ,  m) @(m - M )  
- K O  fd21?2(M) + My2 (4.5) 

This equates the flux of energy into the open ocean (z > 0) in the random P-wave 
mode m to the difference between (i) the power scattered into that mode from the 
K-wave, other P-wave modes M and the coherent field and (ii) the power lost through 
re-scattering into the K- and P-waves. Since the spectrum function @ c c ( ( ~ ~ )  [see 
(2.5) and (2.6) above], (4.5) predicts that S(m)  is also of order (5”. The first term on 
the right of (4.4) is therefore O(E4), and is small compared with the second, O(E2) 
component describing the interaction of the coherent field with the coast. Thus in a 
first approximation, (4.4) implies that 

nfs2 ~(mo+w/s )C- loA~2@(mo+w/  8) 

O(W‘ - f 2)3 I (  M )  @( M + U / S )  ( M  + o / s ) ~  dM 
121 

02Z2(M) + My2 

N 
4njZi W S - ~ ( W / S  + mo)(w/s - mo)-W(mo + w / s )  

KO 
- 

9 

(o/s + M )  ( w / s  - M)-l@(M + w / s )  I - M21 4 dM (4.6) 

where in the definitions (3.12) of C and B use has been made of (2.4) with the O(62) 
correction term neglected. The appearance of the spectrnm <D in both the denominator 

K t K .  
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and the numerator of (4.6) reveals that the strength of the Kelvin wave is of the same 
order w that of the incident P-wave and independent of the magnitude of the coastal 
irregularities. In  particular this indicates that, under steady-state conditions, the 
Kelvin-wave amplitude greatly exceeds that of the P-wave noise, for which 

This is a plausible conclusion which arises because the K-wave is confined to the 
immediate vicinity of the coast, where the rates a t  which it gains and loses energy 
are both O(t2) .  The assumption of steady-state, harmonic conditions implies tha t  the 
K-wave has had an infinite amount of time in which to acquire its finite amplitude. 
However, a quasi-steady incident field of infinite extent will not be encountered in 
practice. Accordingly the problem of determining the manner in which these simple 
results are modified when account is taken of the space-time variations of the incident 
field must now be considered. 

S(m) = O(E2). 

5. The kinetic equation 
Equation (3.17) for the continuum distribution function P(m) has been derived 

on the assumption that the statistical properties of the local random Fourier co- 
efficients h(m) of (3.3) depend neither on the time nor on the position along the coast, 
i.e. (3.17) describes multiple scattering of an incident plane wave of infinite extent 
under ‘equilibrium ’ conditions. Space-time variations in h(m) (and hence p(m))  
caused by scattering will scale respectively on distances/times O( l/@) greater than 
the characteristic wavelengthlwave period. In  other words the derivatives of h(m) 
with respect to  y and t are O(s2) quantities and therefore small for small coastal 
irregularities 6. On this basis we shall now derive additional terms for inclusion in 
(3.17) which take account of possible space-time variations in P(m) due to scattering. 
This will lead to an integro-differential kinetic equation (cf. Howe 1974b; Mysak & 
Howe 1976). 

In  8 4 it  was deduced that, in the extreme case of an incident plane wave of infinite 
extent, for which the energy scattered into the random modes must be maximal, the 
K -  and P-wave energy densities are respectively O(1) and O(t2) quantities. If  the 
amplitudes of these waves are slowly modulated in the manner described above, it 
follows that the space/time derivatives of the K- and P-components of P E P(m, y, t )  
are respectively O(62) and O(t4). Since the leading terms in (3.17) are already O(52) 
it is clear that only the derivatives of the K-wave need be taken into account. Further 
it is necessary to consider only the additional terms which arise in (3.17) from averaging 
p n u  = pg&u on the left of (3.9), since the remaining terms in this equation involve 
6 and 6 2  and would give contributions of higher order than 62. 

Consider a single component of the unmodulated scattered field: 

6 = h(m)expi{Ex+my-wt}+c.c . ,  (5.1) 

where 1 = l(m) = [Kt - m2]) > 0 when m2 < K; and is positive imaginary otherwise. 
Using (5.1) in (2.9) we have 
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Suppose now that h is a slowly varying function of position y and time t :  
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h = h(m, y, t ) ,  

where h,, h, = O ( 8 )  h. Then in place of (5.2) we shall have 

(5.3) 

u = exp i(Zx +my - w t ) Z ( m  - ia,, w + 2,) h + C.C. 

21 e x p i ( Z ~ + m y - w t ) { ~ ( m , w ) + i [  oEP,8,-9ma,]}h+c.c. (5.4) 

This result indicates that in evaluating the mean value (pgq5,u) of the left-hand 
side of (3.9) the additional terms will arise from the second component of the curly 
brackets in (5.4). Recalling that i t  is necessary to account only for the derivatives of 
the K-wave amplitude for which m = - w / s ,  it follows easily that 

(5.5) 

Since s = (gd)t is the group velocity of a K-wave we see that (5.5) represents the usual 
space-time evolution operator for a slowly modulated wave packet. Hence the term 
Il corresponding to (pgq5, u) involves the foliowing contribution in addition to those 
already shown in (3.13): 

(5.6) 

%a, - =%m aa/1m3-w/s = (g/sf) (8, -sa,). 

Pg2 
sf S n , , 4  - (8, -sag) B(m, Y, t )  dm. 

Incorporating this into (3.17) we obtain the desired integro-differential (kinetic) 
equation for P(m, y, t )  = p(na): 

= -$ P9' * aqm- n / r ) { p ( ~ ) p ( m )  r (m,  31) - - p ( m ) p ( ~ )  r(x, ?+m w z - j z  --m 

+- Ps2 / ( m - m , ) C + z , B ~ ~ ~ ( m - ? n , ) ~ ( ~ ) .  (5.7) 
0'- f' 

Note that the additional 'propagation ' term which now appears in this equation will 
make a non-trivial modification to the multiple scattering analysis only if a space/time 
variation is introduced into the original problem of the scattering of the incident 
Poincard wave (2.1). Accordingly we shall assume that the amplitude coefficient a of 
that wave is a function of y, t which varies slowly on a scale of wavelength/wave 
period. 

Multiply (5.7) by the mean depth d and use the decomposition (4.3) of p(m) to 
obtain 

S(m) H(K,2 - m2) + (at - sa,) 1 



Scattering of Poincwk waves. Part 2 349 

The Fourier amplitude h(m) has the dimensions of length, therefore ,8(na) as defined 
in (3.7) has the dimensions (length)2 per unit wavelength. It follows from (4.3) that 
1 and S(m) have dimensions (length)2 and (length)2 per unit wavelength respectively. 

Introduce the following definitions of the terms in the square brackets on the left 
of (5 .8 ) :  

Then 

represents t.he total mean power per unit length of the coast, scattered into the random 
P-waves, and K(y ,  t ) ,  or equivalently, 

/ K(y, t )  6(nt + w / s )  dm,  
- m  

is the mean energy per unit length of coast associated with the Kelvin wave. For 
example, the latter identification may be established by observing that (5 .1 ) ,  with 
m = - (c)/s, and (2 .9 )  imply that 

q5 = h( - w / s )  exp { - f x / s  - iw(y/s + t ) }  + c.c., 

u E 0, v = ( - g / s )  h( - w / s )  exp { - f z / s  - i w ( y / s  + t ) }  + C.C. 

Hence, to leading order, the kinetic energy per unit length of coast is given by 

Further, the potential energy per unit lengt'li of coast is 

(5 .11)  

(5.12) 

Combining (5 .11)  and (5 .12)  leads precisely to the definition (5.10) of K(y , t ) .  

definitions (5.9) and (5 .10)  in the left-hand side: 
It is convenient to record here t,he explicit form of (5.8) when use is made of the 

P(n2) H(Kt  - m2) + (a, - sa,) KS ~b + ; ( "1 
= * / @ ( m  - Af) [P(Mlp(m)  r(m, M )  --B(m)p(M) r ( M ,  m)ldJ+' 

w2- f 2  

Pg2d 
w2- f 2  

+ - 1 (m - mo) C + Zo BI @(m - mO)y(m). (5 .13)  

In  this result P(m) is given by 

Integration of (5.13) over all values of nz yields an energy conservation principle 
analogous 60 ( 4 . 2 ) .  
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6. Equations for K(y , t )  and P(rn,y,t) 
The general kinetic equation (5.13) may be split into separate but coupled equations 

for the distribution functions K(y, t )  and P(m, y, t )  in the manner already discussed 
in $4.  Thus the K-equation is obtained by substituting from (5.14) into (5.13) and 
integrating over a small interval about m = - w / s :  

(&$) K+;K 1 = J+s,, 

The left-hand side of (6.1) describes the decay of the Kelvin wave as it  propagates 
without dispersion along the coast at  velocity - S. The decay arises from the scattering 
of energy into a diffuse field of P-waves and occurs over a characteristic time 7. It 
is countered by the terms J and SK on the right-hand side, which respectively represent 
the energy flux into the K-wave due to multiple scattering of the P-waves and the 
direct scattering of the incident PoincarB wave. 

UseoftherelationP(M) = Ki-APreduces (6.2)and(6.3) to 

I(M) dM, 
7 

J = $IKo  -@(M+:) 1 (:+31)2P(M)dM, 
-KO 

( 6 . 2 ~ )  

( 6 . 3 ~ )  

Also (3.12) and the non-random expression (2.4) for R imply that (6.4) can be written 
in the form 

( 6 . 4 ~ )  

In  this expression P* is the power in the incident wave per unit length of coast, viz. 
[cf. (5.9)] 

in which la12 = ]aI2(y,t) varies slowly over distances/times large compared with the 
characteristic wavelengthlwave period. 

Let us now introduce a polar representation of the incident and scattered wave 
fields and obtain an alternative set of expressions for 1/7, J and S,. For the incident 
wave write 
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where KO is given by (2.2) and 60 is measured clockwise from the z axis (see figure 2). 
Frequency is conserved on scattering, so that the real wavenumber vector of a scattered 
P-wave may be similarly expressed: 

16'  < +7 (6.7) 
(Z(m), m)  = K,(cosO, sin 6 ) )  

(ww, M )  = K O ( C 0 S  $4 sin $ 1 9  141 < in, 
where 6 and $ are measured counter-clockwise from the x axis. Substitution of (6.6) 
and (6.7) into (6.2a)-(6.4a) thenleads to 

1 +bsin$ I l-bsin$ 
cos2 $ d$) 

1 3 4. 
7 - = 2fb2 (:) J-*n (9[: (1 +bsin$) (6.2b) 

where b = (1  - f 2 / ~ 2 ) * ,  (6.8) 

Q($)  = P(M) cos$ [ (w2- f2 ) / s2 ]~ .  (6.9) 
Note that Q and P *  have the same dimensions and that Q($)d$ is the P-wave power 
per unit length of coast which radiates in the angular element ($ ,d$)  into the open 
ocean. 

The equation for P(m) = P(m,y,t), and hence also that for Q($) ,  is obtained by 
inserting (5.14) into the general kinetic equation (5.13) and specifying that m2 < G; 
this gives 

2wZ(m) pg2d 
where 8, = (6.11) 

As in the case of the K-equation, (6.10) and (6.1 1 ) may be simplified and then expressed 
in terms of angular co-ordinates. We shall not describe the straightforward details of 
this reduction, but present the final result: 

I (m - m,) c + I ,  BI 2 @(m - m,). 
( 0 2  - f 2) ( w V ( m )  + m y )  

(6.12) 

cos 6, cos2 6w4( 1 - b2 sin 6 sin 6$ 
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Y 

FIGURE 2. Co-ordinates for the incident and scattered fields. 

where 
[w2(1 -sin13sin#)~+f~sin~Ocos~#] cos28 

(w2 cos2 8 + f sin2 0 )  cos q5 F(O,q5) = (6.13) 

The terms on the right of (6.12) have the following interpretation. The power per 
unit length of coast scattered into that P-wave which radiates at  the angle 0 into the 
open ocean results from the following interaction processes: 

(i) scattering into the P-wave from the K-wave; 
(ii) re-scattering from the P-wave into the K-wave; 
(iii) net scattering into the P-wave from all other random P-waves radiating at  

(iv) scattering into the P-wave from the incident Poincar6 wave. 
angles 4; 

7. The decay of an unforced Kelvin wave 
Our first application of the kinetic theory is to a situation in which the incident 

Poincare wave is absent (P* = 0) and in which it is assumed that at  time t = 0 there 
exists a Kelvin wave of frequency w located near the origin y = 0. This initial con- 
dition can be modelled by 

and may be regarded as characterizing a tidal crest that arrives at t = 0 at the mouth 
of a narrow canal flowing into the ocean at  y = 0. In  order to examine the subsequent 
propagation of the K-wave along the irregular coastline consider (6.1), in which we 
set S, = 0 and the O(t4) contribution J from multiply scattered P-waves is neglected: 

(7.1) K(Y, 0) = lo(u) &(Y) 

(i-8;) K+; K = 0. 

The solution K = lo S(y + s t )  e-t/T (7.3) 

describes a K-wave packet propagating at  speed s in the - y direction and decaying 
in a characteristic time 7 .  If  0 < w /  f < 1, so that KO is pure imaginary, r = 00 and the 
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wave does not decay through radiation damping because P-waves cannot propagate 
at these frequencies. For frequencies exceeding f, 7 = ~ ( w ,  t2) = O( 1/(t2)) and is given 
by (6.1). 

The manner in which T varies with the radian frequency w of the K-wave depends 
on the statistical properties of the coastal irregularities. For the sake of definiteness, 
consider here and throughout the remainder of this paper a Gaussian coastline for 
which the covariance takes the form 

2 ( Y )  = G2> exp ( - Y2/i2)9 (7.4) 

where 1 is the correlation length of &). Inserting (7.4) into the definition (2.5) of the 
spectrum, we have 

Q(m)  = Qoexp ( - &m212) (a,, = 1{62)/27ri). (7.5) 

(In HM the notation ,u = 2/1 was employed.) 
Before using (7.5) to compute the detailed behaviour of T it is instructive to examine 

its variation in the asymptotic limit c2 = ( ~ 1 / 2 s ) ~  9 1, i.e. when the scale 1 of the 
coastal irregularities greatly exceeds the K-wavelength. In  this case it follows from 
(6.2b) and (7.5) that the main contribution to the integral defining 1 / ~  is from the 
small interval of q4 in which 

0 { ( w / s )  (1 + b sin $)} = Qo exp { - c2( 1 + b sin q4)2} 

attains its largest values. Since 0 < b < 1, this occurs near $ = --in. Hence setting 
$ = - & + A ,  we find that for c2 9 1 

@ [ (w /s )  (1 + b sin O)] N Qo exp [ - c2( 1 - b)2 - b( 1 - b )  c2h21. 

Hence we have approximately from (6.2 b) 

som h2exp { - b( 1 - b )  c2h2)dh (7.6) 
1 fw3b2( 1 - b) exp { - c2( 1 - b)2}  
- N  

s3( l + b) 
- 

7 

provided that b is not close to zero (w = f) or unity. Performing the integration we find 

- N -  ' - ( - ) i~exp{-c2 ( l -b )2} .  
T ( I+b)  1-b (7.7) 

Thus for a sIowly varying coastline (wZ/s 9 1) and intermediate frequencies, 1 / ~  is 
exponentially small compared with the Coriolis parameter f ,  i.e. T is effectively 
infinite. For higher frequencies the argument of the exponential in (7.7) can be O(1) 
even when the coefficient b ( l  - b ) c 2  in the exponential of the integrand of (7.6) is 
large. In  this case 7 = O(Z2/ f{c2)), which is large, but finite, and in particular indicates 
that at high frequencies a slowly varying coastline is characterized by a relaxation 
time which is comparable with that associated with tidal linear bottom friction, 
T~ = O(102/f) (cf. Heaps 1969). 

Figure 3 illustrates the variation of T over a wide range of frequencies and for 
several values of a = 1/2r ( r  being the Rossby radius slfintroduced in 3 3).  A quantity 
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a=u/ f  

FIGURE 3. The non-dimensional e-folding distance 2 e Z ~ r r ~ / d  given by ( 7 . 8 ~ )  for a K-wave propa- 
gating along a coastline whose irregularities are characterized by the Gaiissian spectrum (7.5). 

is plotted which is numerically proportional to the e-folding or dissipation distance sr 
non-dimensionalized by the wavelength, viz. 

(4nk52) sr / (s2n/w) = 2&2wT/n4 

1 +bsin€J cos2 @do, 
= I (u2-l)a e x p [ - ~ ~ a ~ ( l + b s i n 8 ) ~ ]  1-bsin8 I 

(7.8a) 

where & = @)$Jr, u = w /  f. (7.8b) 

In (7.8b),  E is the coastal parameter defined in $ 3  and CT is the non-dimensional fre- 
quency; these parameters are the same as those used in $ 5 of HM. For low frequencies 
(u 2 1) (7 .8a)  reveals that T is large, as expected (see also figure 3). 

Note first of all from figure 3 that, for each value of the non-dimensional correlation 
scale a,  the e-folding distance rapidly attains a minimum value as u increases away 
from unity. As a decreases (corresponding to rougher coastlines) these minima occur 
at  progressively higher frequencies (shorter wavelengths), and we conclude that the 
most rapidly decaying K-waves (on a scale of wavelength) have wavelengths of 
the same order as the correlation scale, i.e. satisfy a(u2- l ) 6  = O(1). At very high 
frequencies, figure 3 corroborates our earlier asymptotic analysis, the linear form of 
the curves for large CT being in qualitative agreement with our conclusion 

or equivalently €2wr - ua2. 
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For fixed values of a an examination of the linear portions of the curves also confirms 
that the e-folding distance increases approximately quadratically with the correlation 
scale a. At very small values of a (rough coasts) the e-folding distance increases 
very slowly with increasing frequency, indicating that all short waves are rapidly 
attenuated. 

In  the absence of an incident Poincar6 wave (P*  = 0), equation (6.12) for the 
directivity Q(0) of the scattered P-wave noise reduces to 

I) Q(0) (1 +w& (:)3 (1 + bsin8)Z 4D 

= K(y , t )2 jb2 ( : )3cos2D(1+bs?e )  l -bsmo @[;(l+bsinO) 1 , (7.9) 

in which O(C4) terms describing multiple interactions among the P-waves have been 
discarded. When K(y, t) has the form given in (7.3) it is clear that (7.9) determines the 
distribution of P-waves radiating from a moving source at the current location 
y = - st of the Kelvin wave. 

Let us examine the nature of the angular distribution Q(8) in the limit of large 
correlation scale c2 = (w1/2s)2 9 1. The second term in the curly brackets on the left 
of (7.9) is important only a t  grazing scattering angles (0 - 2 in); we shall neglect its 
contribution and examine the validity of the approximation a posteriori. 

Thus for c2 1 we have from (7.9) 

K(y, t) 2wf(02 - j 2 )  (1 - b) @,exp { - c2( 1 - b)2) 
s2b( 1 + b) 

This expression has its maximum value at 

Q(4 2: 

x (0 + &r)2exp { - (e + tn)2c2b( 1 - b)}. (7.10) 

8 ,+&r=Ae= l / c [b ( l -b ) ]&< 1. (7.11) 

Accordingly the 0, direction makes a small angle A8  with the direction (0 = - Qn) of 
propagation of the Kelvin wave along the coast. In  other words the energy of the 
K-wave is predominantly scattered in the forward direction into a narrow Gaussian 
beam of Poincar6 waves of width - A0 which makes a small angle ABwith the direction 
of propagation of the K-wave. 

The neglect of the second term in the curly brackets on the left of (7.9) can now be 
seen to require that 

m y (  1 + b sin em)z 4Do 
s2b 

exp { - C ~ ( I  + b sin emp) Q cos em, 

8nc3( 1 - b)2 <Do exp { - c2( 1 - b)2} < Ae, gb13 
i.e. that 

or exp {c2( 1 - b)2). 

(7.12) 

(7.13) 

Taking c = 10 and b = 0.9 (a N 2*3), say, and using (7.5) and (7.11), this condition 
implies that ( t2 )4 /1  Q 0.16, (7.14) 

i.e. that the correlation scale must also be large compared with C. 
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A similar analysis justifies the neglect in the above discussion of the third term on 
the right of (6.12), which describes multiple scattering of the P-wave noise (cf. Howe 
1974a, 0 5). 

8. The generation of a Kelvin wave by a normally incident Poincark wave 
Suppose next that  a Poincar6 wave is incident normally along the whole of the coast, 

the wave front arriving a t  time t = 0, and that 

K ( y ,  0) = 0. (8.1) 

When variations with y of the incident P-wave can be neglected the leading approxi- 

(8.2) 
mation to  (6.1) becomes 

This problem is a simple model of an extensive storm surge that originates far out a t  
sea and propagates towards the coast. 

(8.3) K = S, r{ 1 - e-t/7> 

a q a t  + K/' = s,H(t). 

The solution 

may be expressed in the form 

(8.4) KIT - = bC(8, = 0) ( 1  - e-tir), P* 

where the coefficient C is defined in (3.12) and (for later convenience) is given here as a 
function of the angle of incidence 0,: 

The quantity (K/7)/P* represents the ratio 

1 + b sin O,)]. (8 .5)  

flux of energy intc K-wave 
incident energy flux . EK(t)  5 

When the steady state is attained ( t  -+ co), Eh(t) --f bC = E,, which was designated 
the ' K-wave efficiency factor' in HM (see figure 2 of HM for the variation of E ,  as a 
function of the angle of incidence in the case of a Gaussian coastal spectrum). For finite 
times t and large values of the relaxation time r (corresponding t o  the low frequency 
case w l f  2 1 ,  b < 11, (8.4) shows that K ( t )  N bC(0) P*t. Since b is small this implies 
that  the energy content of the Kelvin wave increases very slowly. The dependence of 
log,, EK( t )  on the frequency w of the incident Poincard wave a t  various times t and for 
three different values of the correlation scale a = E/2r is illustrated in figure 4. The 
dimensionless parameters are the same as those used previously ( $ 7 ) .  The time 
T = tfis measured in units of the inverse Coriolis parameter; a t  a latitude of 45" say, 
T = 1 corresponds to about 2.8 h. 

Observe that at a fixed frequency the scattering becomes considerably more 
efficient as the correlation scale a decreases, the total change from figure 4(a )  to  
figure 4(c) being typically two or more orders of magnitude. We also note that, for 
fixed T and a,  log,, E,-(t) rapidly increases with until a maximum is reached. That 
is, K-waves are most efficiently generated a t  all times when the correlation scale is 
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FIGURE 4. Log,, EK(l )  v,~. frequency r = w / f  for a normally incident P-wave. EK(t)  is given by t l  e 
right-hand side of (8.4), in which the Gaussian spectrum (7.5) is used. (a)  a = 1.0, ( b )  a = 0.5, 
(c) a = 0.2.  T = tfis ~t non-dimensional time and in all cases E = 0.1. 
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comparable to the wavelength. But this is precisely when the e-folding distance of a 
K-wave is greatest (see figure 3). Thus it appears that the two processes - generation 
and dissipation due to coastal irregularities - are likely to be very much in balance. 

9. Localized forcing of Kelvin waves 
A Poincar6 wave incident over a finite portion of the coast may be taken to model 

a localized storm surge. The problem now is to determine the Kelvin-waveresponse at  
remote positions along the coast. If the storm is centred about y = 0 on the coast and 
extends over a region which is small compared with the dissipation scale s r ,  the spatial 
distribution of power in the incident wave may be represented by 

P" = Po*6(y), 

where P,* is the total incident power. 

wave equat,ion (6.1) becomes 
If  the Poincar6 wave arrives at  time t = 0, the leading approximation to the Kelvin- 

K 
at ay r 

(2-82) K+- = b P ~ C ( B O ) 6 ( y ) H ( t ) ,  

where C(0,) is given by (8.5). 
Introduce the Green's function G(y, t )  which is the causal solution of 

viz. G(y, t )  = S(y + st) H ( t )  e-t17. (9.3) 

The solution of (9.1) may now be expressed as the convolution product 

K ( y ,  t )  = //Irn bP: C(0,) 6( Y ) H ( T )  C(y - Y ,  t - T ) d Y  dT, 

i.e. 

K ( y ,  t )  = bP,* C(0,) Sm Sm 6( Y )  H ( T )  S[y - Y + s(t - T)] H ( t  - T )  e-(t-z')'r d y d p  
--m - w  

t 

= bP,* C(8,) [ S[y + s(t - T)] e+- dT. (9.4) 

The argument of the &function vanishes at T = t + y/s, which lies within the range of 
integration provided that 

(9.5) 

i.e. for y < 0. Hence, for t > 0, 

0 < y /s+ t  < t ,  

K(y, t )  = H (  - y) H t + 2 I) Po* C(0,) eVlsr. ( 8)s 

This result reveals that, at  time t after the arrival of the storm surge at  the coast, the 
Kelvin wave has swept out an exponentially decaying envelope which stretches a 
distance st along the coast from the storm centre. Note in particular that the intensity 
of the Kelvin wave saturates immediately the wave front y = - st arrives. The profile 
of the envelope is time independent, so that ultimately (as t -+ 00) the wave amplitude 
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becomes an exponentially decaying function of y ( < 0) alone. When this steady state 
is attained (and in the absence of other dissipative mechanisms) all of the power 
incident on the coast from the Poincar6 wave is re-radiated as diffuse P-waves. The 
distance D over which the intensity of the Kelvin wave is reduced to 10% of its 
magnitude in the vicinity of the storm is given by 

1 -e -D /sT  = 0.9 

i.e. D 2: 2.397. Numerical estimates for D can be computed from figure 3 when the 
frequency w of the storm surge is specified. As an illustration consider the case 
a = 11% = 0.5 and suppose that (E2)* /1  = 0.1. Let the radian frequency of the incident 
wave be given by w = 3f, corresponding to a characteristic storm surge period of 
about 6 h at  a latitude of 45". These figures imply that 8 = (t2)t(s/f)-l = 0.1, and it 
follows from figure 3 that wr 2: 13. Hence the Kelvin-wave relaxation distance 

Since 1 = r = O( 1 O3 km) this distance is unlikely to be relevant in practice because of 
the intervention of more severe coastal irregularities. 

Consider next the response produced by a localized storm surge which is moving 
parallel to the coast. Much of the early literature on storm surges is concerned with 
such problems (see, for example, Thomson 1970), but little attention has been paid to 
the effects of coastal irregularities. We now have 

K ( 5 - s i )  K + y  = SoS(y- V t ) ,  (9.7) 

where the right-hand side is a formal representation of the storm, So being a measure 
of its intensity, Using the Green's function (9.3) we find 

We examine first of all the 'resonant ' case in which V = - s. This apparently singular 
situation should be interpreted as follows. An arbitrary storm may be Fourier de- 
composed into component, harmonic storm waves; the case V = - s therefore applies 
to that constituent group of storm waves whose group velocity parallel to the 
coast is just equal to the propagation velocity of Kelvin waves. The solution (9.8) 
is then 

Since r = O( l/c2) 1 this describes a steady Kelvin wave of relatively large amplitude 
and, as is usual for a harmonic oscillator driven at resonance, the intensity of the 
K-wave varies inversely with the damping coefficient 117. The importance of this 
case is that it  leads to the most rapid transfer of energy to the Kelvin wave. Thus the 
strong coupling with the storm at resonance could, in principle, lead to its very rapid 
dissipation. 

K = S ,d (y+s t ) .  (9.9) 
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When V + -s,  we have 

(9.10) 

a result which shows that the K-wave amplitude always decays with distance from 
the storm centre y = Vt. For subcritical storm propagation velocities I Vl < s, the 
Kelvin waves propagate into the wake or ahead of the storm according as V 0. 
At supercritical velocities the Kelvin waves propagate away from the storm and into 
the wake for V > s ;  when V < --s < 0, the Kelvin waves propagate in the wake 
but in the same direction as the storm. 

10. Multiply scattered Poincarh waves 

Q(8) of the P-wave noise. I n  the single-scattering approximation (6.12) reduces to 
I n  this section we examine the effect that  multiple scattering has on the distribution 

Q(8) Q5(@ = KI + PI, (10.1) 

where the terms on the right-hand side denote respectively the first and last com- 
ponents on the right of (6.12), i.e. the energy fluxes into the P-wave noise from the 
Kelvin wave and the incident Poincark wave. These terms are generally O(s2) relative 
to the incident wave, 

When multiple-scattering terms are retained in (6.12) we can write 

K I  + PI 
&(') ',(*) = 1 + [ A ( @  + B(8)l sec 8' (10.2) 

w 3 )  

> 0, 
n d f (  1 + b sin 8)2 

s3b 
where A ( 8 )  = 

\ - - ,  

b(sin 8 -sin $) F(#, 8) d$ > 0. 1 
Equation (10.2) follows from (6.12) when the O(e4) input of energy into the P-waves 
radiating in the 8 direction from other P-waves radiating in the Q direction 

(-4. < Q < 4n), 

which corresponds to the first term in the curly brackets of the integrand on the right 
of (6.12), is neglected. 

The coefficients A(8)  and B(8) are O(@) and account respectively for the loss of 
energy from P-waves radiating in the 8 direction into the Kelvin wave and into 
P-waves radiating in the $ direction. Equations (10.3) and (6.13) show that A and B 
remain finite as O - t ?  in, so that provided that see8 = O(l) ,  i.e. away from near- 
grazing scattering angles, Qs/Q, = 1 + O ( @ )  and multiple scattering is not significant. 
For angles close to  ? in however, the term in sec 8 in (10.2) becomes important, so that 
Qs/Q, = O(sec 8)) i.e. a t  these angles multiple scattering reduces the intensity of the 
P-wave radiation into the open ocean. 

The behaviour of the power ratio Q5/Q, is illustrated in figure 5 .  The quantity 

A = 10log,, (&s/&,) 
= 1Ologl0{1 + [ A ( @ )  +B(8)]sec8}, (10.4) 
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FIQURE 5. Plots of the power ratio A w8.B as given by (10.4) for the case of the Gaussian spectrum 
(7.5).  In all cases B = 0.1. (a) a = 1.0, ( h )  a = 0.5, (c) OL = 0.2. 
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which is always positive because Q, < Qs, is plotted as a function of 8 for E = 0-1 
and different values of the frequency olf and the correlation scale a. 

Figure 5 (a )  depicts the case of a ‘smooth’ coast with a E 1/2r = 1. As 8-+ k in, A 
becomes large, but in addition there is a local maximum near 6 = 0 which is more 
pronounced a t  the higher frequencies. Thus at high frequencies multiple scattering is 
marginally significant near normal scattering angles, a result which is directly attribu- 
table to the effect of rotation (i.e. the presence of the Coriolis parameterf) in the 
function F($, 8) appearing in the definition of B(8).  Similar remarks apply to figure 
5(b) ,  for which a = 0.5. However a slight skewness is now observable at  the lower 
frequencies, A being somewhat larger near 8 = + in than near 8 = - in. This effect 
can be traced to the behaviour of the Kelvin-wave coefficient A(8)  in (10.4): 

A(8 N =in) > A(8 N --in), 

indicating that, relative to the direction of propagation of the K-wave, more energy 
is fed into the Kelvin wave from the P-wave noise at back-scattering angles. In  the 
case of a ‘rough coast’ (figure 5c), for which a = 0.2, the preference for multiple 
scattering a t  near-normal angles has disappeared, but the skewness at low frequencies 
is more significant. 

Of course the logarithmic scale used in these plots implies that, except at  angles very 
close to grazing and a t  relatively high frequencies, the actual numerical values of the 
power ratio are not significantly different from unity. 

1 1. Conclusion 
In  this paper we have developed a multiple-scattering theory which describes the 

long distanceltime interaction of waves on a uniformly rotating sheet of homogeneous 
fluid with a coastline which is straight except for small random deviations. The theory 
is expected to be valid provided that the characteristic wavelength is large compared 
with the root-mean-square coastal irregularity, and has been applied to several 
idealized models of tidal and storm surges. 

I n  particular, emphasis was placed on the determination of the distribution of 
scattered waves produced by a localized or extensive Poincarh wave incident on the 
coast. Our conclusions relating to the generation of Kelvin waves invite a comparison 
with other possible forcing mechanisms, such as the effect of atmospheric pressure 
fluctuations, surface wind stress and earth tides. Further, it would be of great interest 
to compare the degradation of a Kelvin wave by coastal irregularities with that 
caused, for example, by bottom friction. These important issues have not been 
examined here, and their investigation would require a careful analytical modelling 
of the corresponding energy sources and sinks in the general kinetic equation. Such 
an approach is now the object of modern studies in ocean wave dynamics (cf. the 
recent study of internal waves in the deep ocean by Miiller & Olbers 1975), and it 
would appear to be appropriate to attempt a similar study for the dynamics of Kelvin 
waves. 

This work was partly supported by the National Research Council of Canada 
throughoperating GrantA5201. We are indebted to Mr J. A. Helbig, who programmed 
the numerical computations and plotted figures 3-5. 
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